Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 7436, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37973980

RESUMO

The cranial vault in humans is highly variable, clinically relevant, and heritable, yet its genetic architecture remains poorly understood. Here, we conduct a joint multi-ancestry and admixed multivariate genome-wide association study on 3D cranial vault shape extracted from magnetic resonance images of 6772 children from the ABCD study cohort yielding 30 genome-wide significant loci. Follow-up analyses indicate that these loci overlap with genomic risk loci for sagittal craniosynostosis, show elevated activity cranial neural crest cells, are enriched for processes related to skeletal development, and are shared with the face and brain. We present supporting evidence of regional localization for several of the identified genes based on expression patterns in the cranial vault bones of E15.5 mice. Overall, our study provides a comprehensive overview of the genetics underlying normal-range cranial vault shape and its relevance for understanding modern human craniofacial diversity and the etiology of congenital malformations.


Assuntos
Craniossinostoses , Estudo de Associação Genômica Ampla , Criança , Humanos , Animais , Camundongos , Crânio/diagnóstico por imagem , Craniossinostoses/genética , Ossos Faciais , Encéfalo/diagnóstico por imagem
3.
PLoS Genet ; 17(8): e1009695, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34411106

RESUMO

Facial morphology is highly variable, both within and among human populations, and a sizable portion of this variation is attributable to genetics. Previous genome scans have revealed more than 100 genetic loci associated with different aspects of normal-range facial variation. Most of these loci have been detected in Europeans, with few studies focusing on other ancestral groups. Consequently, the degree to which facial traits share a common genetic basis across diverse sets of humans remains largely unknown. We therefore investigated the genetic basis of facial morphology in an East African cohort. We applied an open-ended data-driven phenotyping approach to a sample of 2,595 3D facial images collected on Tanzanian children. This approach segments the face into hierarchically arranged, multivariate features that capture the shape variation after adjusting for age, sex, height, weight, facial size and population stratification. Genome scans of these multivariate shape phenotypes revealed significant (p < 2.5 × 10-8) signals at 20 loci, which were enriched for active chromatin elements in human cranial neural crest cells and embryonic craniofacial tissue, consistent with an early developmental origin of the facial variation. Two of these associations were in highly conserved regions showing craniofacial-specific enhancer activity during embryological development (5q31.1 and 12q21.31). Six of the 20 loci surpassed a stricter threshold accounting for multiple phenotypes with study-wide significance (p < 6.25 × 10-10). Cross-population comparisons indicated 10 association signals were shared with Europeans (seven sharing the same associated SNP), and facilitated fine-mapping of causal variants at previously reported loci. Taken together, these results may point to both shared and population-specific components to the genetic architecture of facial variation.


Assuntos
População Negra/genética , Face/anatomia & histologia , Estudo de Associação Genômica Ampla/métodos , Locos de Características Quantitativas , População Branca/genética , Adolescente , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Polimorfismo de Nucleotídeo Único , Tanzânia , Adulto Jovem
4.
PLoS Genet ; 17(5): e1009528, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33983923

RESUMO

The analysis of contemporary genomic data typically operates on one-dimensional phenotypic measurements (e.g. standing height). Here we report on a data-driven, family-informed strategy to facial phenotyping that searches for biologically relevant traits and reduces multivariate 3D facial shape variability into amendable univariate measurements, while preserving its structurally complex nature. We performed a biometric identification of siblings in a sample of 424 children, defining 1,048 sib-shared facial traits. Subsequent quantification and analyses in an independent European cohort (n = 8,246) demonstrated significant heritability for a subset of traits (0.17-0.53) and highlighted 218 genome-wide significant loci (38 also study-wide) associated with facial variation shared by siblings. These loci showed preferential enrichment for active chromatin marks in cranial neural crest cells and embryonic craniofacial tissues and several regions harbor putative craniofacial genes, thereby enhancing our knowledge on the genetic architecture of normal-range facial variation.


Assuntos
Identificação Biométrica , Face/anatomia & histologia , Genômica , Imageamento Tridimensional , Herança Multifatorial/genética , Fenótipo , Irmãos , Adolescente , Criança , Pré-Escolar , Anormalidades Craniofaciais/genética , Conjuntos de Dados como Assunto , Europa (Continente)/etnologia , Face/anormalidades , Face/embriologia , Feminino , Estudos de Associação Genética , Humanos , Masculino , População Branca/genética
5.
Nat Genet ; 53(6): 830-839, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33821002

RESUMO

Evidence from model organisms and clinical genetics suggests coordination between the developing brain and face, but the role of this link in common genetic variation remains unknown. We performed a multivariate genome-wide association study of cortical surface morphology in 19,644 individuals of European ancestry, identifying 472 genomic loci influencing brain shape, of which 76 are also linked to face shape. Shared loci include transcription factors involved in craniofacial development, as well as members of signaling pathways implicated in brain-face cross-talk. Brain shape heritability is equivalently enriched near regulatory regions active in either forebrain organoids or facial progenitors. However, we do not detect significant overlap between shared brain-face genome-wide association study signals and variants affecting behavioral-cognitive traits. These results suggest that early in embryogenesis, the face and brain mutually shape each other through both structural effects and paracrine signaling, but this interplay may not impact later brain development associated with cognitive function.


Assuntos
Encéfalo/anatomia & histologia , Face/anatomia & histologia , Padrões de Herança/genética , Adulto , Idoso , Comportamento , Cognição , Feminino , Loci Gênicos , Estudo de Associação Genômica Ampla , Humanos , Imageamento por Ressonância Magnética , Masculino , Transtornos Mentais/genética , Pessoa de Meia-Idade , Análise Multivariada
6.
Front Genet ; 12: 626403, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33692830

RESUMO

Unaffected relatives of individuals with non-syndromic cleft lip with or without cleft palate (NSCL/P) show distinctive facial features. The presence of this facial endophenotype is potentially an expression of underlying genetic susceptibility to NSCL/P in the larger unselected population. To explore this hypothesis, we first partitioned the face into 63 partially overlapping regions representing global-to-local facial morphology and then defined endophenotypic traits by contrasting the 3D facial images from 264 unaffected parents of individuals with NSCL/P versus 3,171 controls. We observed distinct facial features between parents and controls across 59 global-to-local facial segments at nominal significance (p ≤ 0.05) and 52 segments at Bonferroni corrected significance (p < 1.2 × 10-3), respectively. Next, we quantified these distinct facial features as univariate traits in another dataset of 8,246 unaffected European individuals and performed a genome-wide association study. We identified 29 independent genetic loci that were associated (p < 5 × 10-8) with at least one of the tested endophenotypic traits, and nine genetic loci also passed the study-wide threshold (p < 8.47 × 10-10). Of the 29 loci, 22 were in proximity of loci previously associated with normal facial variation, 18 were near genes that show strong evidence in orofacial clefting (OFC), and another 10 showed some evidence in OFC. Additionally, polygenic risk scores for NSCL/P showed associations with the endophenotypic traits. This study thus supports the hypothesis of a shared genetic architecture of normal facial development and OFC.

7.
Nat Genet ; 53(1): 45-53, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33288918

RESUMO

The human face is complex and multipartite, and characterization of its genetic architecture remains challenging. Using a multivariate genome-wide association study meta-analysis of 8,246 European individuals, we identified 203 genome-wide-significant signals (120 also study-wide significant) associated with normal-range facial variation. Follow-up analyses indicate that the regions surrounding these signals are enriched for enhancer activity in cranial neural crest cells and craniofacial tissues, several regions harbor multiple signals with associations to different facial phenotypes, and there is evidence for potential coordinated actions of variants. In summary, our analyses provide insights into the understanding of how complex morphological traits are shaped by both individual and coordinated genetic actions.


Assuntos
Face/anatomia & histologia , Estudo de Associação Genômica Ampla , Acetilação , Elementos Facilitadores Genéticos/genética , Epistasia Genética , Extremidades/embriologia , Face/embriologia , Loci Gênicos , Histonas/metabolismo , Humanos , Lisina/metabolismo , Metanálise como Assunto , Análise Multivariada , Crista Neural/citologia , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Crânio/embriologia , Reino Unido , Estados Unidos
8.
Sci Rep ; 10(1): 11850, 2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32678112

RESUMO

Estimates of individual-level genomic ancestry are routinely used in human genetics, and related fields. The analysis of population structure and genomic ancestry can yield insights in terms of modern and ancient populations, allowing us to address questions regarding admixture, and the numbers and identities of the parental source populations. Unrecognized population structure is also an important confounder to correct for in genome-wide association studies. However, it remains challenging to work with heterogeneous datasets from multiple studies collected by different laboratories with diverse genotyping and imputation protocols. This work presents a new approach and an accompanying open-source toolbox that facilitates a robust integrative analysis for population structure and genomic ancestry estimates for heterogeneous datasets. We show robustness against individual outliers and different protocols for the projection of new samples into a reference ancestry space, and the ability to reveal and adjust for population structure in a simulated case-control admixed population. Given that visually evident and easily recognizable patterns of human facial characteristics co-vary with genomic ancestry, and based on the integration of three different sources of genome data, we generate average 3D faces to illustrate genomic ancestry variations within the 1,000 Genome project and for eight ancient-DNA profiles, respectively.


Assuntos
Identificação Biométrica/métodos , Face/anatomia & histologia , Genoma Humano , Genética Humana/métodos , Padrões de Herança , Modelos Estatísticos , Conjuntos de Dados como Assunto , Reconhecimento Facial/fisiologia , Feminino , Genética Populacional/métodos , Estudo de Associação Genômica Ampla , História do Século XXI , História Antiga , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Grupos Raciais/história
9.
BMC Bioinformatics ; 20(1): 364, 2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31253090

RESUMO

BACKGROUND: Genome imputation, admixture resolution and genome-wide association analyses are timely and computationally intensive processes with many composite and requisite steps. Analysis time increases further when building and installing the run programs required for these analyses. For scientists that may not be as versed in programing language, but want to perform these operations hands on, there is a lengthy learning curve to utilize the vast number of programs available for these analyses. RESULTS: In an effort to streamline the entire process with easy-to-use steps for scientists working with big data, the Odyssey pipeline was developed. Odyssey is a simplified, efficient, semi-automated genome-wide imputation and analysis pipeline, which prepares raw genetic data, performs pre-imputation quality control, phasing, imputation, post-imputation quality control, population stratification analysis, and genome-wide association with statistical data analysis, including result visualization. Odyssey is a pipeline that integrates programs such as PLINK, SHAPEIT, Eagle, IMPUTE, Minimac, and several R packages, to create a seamless, easy-to-use, and modular workflow controlled via a single user-friendly configuration file. Odyssey was built with compatibility in mind, and thus utilizes the Singularity container solution, which can be run on Linux, MacOS, and Windows platforms. It is also easily scalable from a simple desktop to a High-Performance System (HPS). CONCLUSION: Odyssey facilitates efficient and fast genome-wide association analysis automation and can go from raw genetic data to genome: phenome association visualization and analyses results in 3-8 h on average, depending on the input data, choice of programs within the pipeline and available computer resources. Odyssey was built to be flexible, portable, compatible, scalable, and easy to setup. Biologists less familiar with programing can now work hands on with their own big data using this easy-to-use pipeline.


Assuntos
Biologia Computacional/métodos , Interpretação Estatística de Dados , Estudo de Associação Genômica Ampla , Automação , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA